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Abstract
Discretized solutions of fluid equations can fail to accurately predict breakdown
of a plasma for several reasons. During breakdown, the initial density can
grow very rapidly indeed. As a consequence, small errors, such as those
produced by ‘numerical diffusion’, can be greatly magnified. We present
results which demonstrate the effect of numerical diffusion in the presence of
strong growth in density over time, and we propose a criterion which indicates
when a discretized solution of fluid equations can be expected to describe
breakdown accurately. We further discuss how fluid schemes which employ
energy conservation should be limited in the size of the discreteness parameters,
i.e. mesh size and time step (�z,�t), which can be employed. Unless (�z,�t)
are very small, the energy is not typically calculated accurately. (Schemes
which do not conserve energy exhibit dramatic failures in accuracy, however.)
Throughout this work, we compare the results of the various fluid models to a
semi-analytic ‘capacitor’ model of breakdown. The time-dependent capacitor
model (TDCM) avoids the major sources of error which can occur in fluid
models. The TDCM agrees well with energy-conserving schemes, when those
schemes employ very small (�z,�t), whereas the TDCM can employ larger
(�z,�t), well beyond values at which most fluid models fail. Finally, we
investigate a class of fluid models which attempts to capture the same physics
as the TDCM, to study whether the TDCM is distinct from standard fluid
models, and we suggest a fluid model which overcomes some of the limitations
of a standard energy-conserving scheme.
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1. Introduction

In this paper we examine the steps which must be taken in order to specify a discretized fluid
model which accurately describes breakdown at atmospheric or comparable pressure—which
includes having the ability to capture the same physics as the time-dependent capacitor model
(TDCM) of breakdown [1]. Modelling of breakdown in high-pressure discharges has often
been performed using equilibrium fluid equations [2–9]. Guo et al [10, 11], Carman et al
[12, 13] and others [14–16] have argued that it is necessary to use an energy-conserving
scheme, and broadly speaking we strongly agree with them.

However, a number of restrictions on the discreteness parameters of mesh size and time
step (�z,�t) arise in order to minimize the numerical diffusion as much as possible. The
nature of these restrictions is one of the main issues addressed in this paper. Numerical
diffusion, coupled with the very rapid growth in density with respect to time which occurs
during breakdown, can present very significant challenges for developers of simulations.
Some schemes exhibit no (or reduced) numerical diffusion, such as ‘particle’ simulation [25],
Lagrangian schemes [26–28], and the TDCM [1]; these schemes tend to have advantages and
disadvantages as compared to the discretized fluid equations which are more commonly used
in this context. The convected scheme (CS) [18, 30] and the propagator approach to solving
fluid equations [17] which is used here are Lagrangian schemes. They reduce numerical
diffusion considerably, in some versions to a negligible level [29, 31], but nevertheless give
rise to some numerical diffusion whenever fluid is mapped from one set of cells (or mesh)
back onto another mesh.

The TDCM is a very simple physical model which represents the discharge as a number
of capacitors, which in one dimension are in series, and uses energy conservation to calculate
the density as these capacitors break down. These small capacitors are each considered to
be uniform, and so each capacitor can be described analytically [19]. The TDCM has been
successful in describing the essential physics obtained from a purely energy-conserving fluid
scheme, which we denote the R(κ) scheme [17]. The TDCM also has some distinct advantages
over fluid schemes; for instance it has no numerical diffusion since the electrons are not usually
allowed to move outside each capacitor. Electron transport between capacitors is permitted in
the TDCM only in the first introduction of electrons in each capacitor; this first introduction
can consist of ‘injection’ from a neighbour, so some transport is included. Another advantage
of the TDCM is the ability to use a large mesh spacing �z and a long time step �t , which
allows us to use 1000 times larger �z and �t than in the fluid–R(κ) scheme, resulting in a
much reduced computation time. The TDCM conserves energy and uses rates and transport
coefficients found from the electric field (subject to energy conservation).

The R(κ) scheme is not equivalent to the TDCM even though the results reported earlier
agreed very well [1]. The R(κ) scheme uses rates and transport parameters expressed as
functions of mean kinetic energy, while the TDCM uses parameters found from the electric
field. A relatively big time step cannot be applied to the R(κ) scheme; if the time step is too
large, the mean kinetic energy that a particle picks up in a time step will be artificially too
high. The fraction of the energy which is put into ionization will then also be too high. This
simple point, discussed in more detail later, appears to be overlooked in many cases. A similar
limit applies to the mesh size (again, discussed below).

Here we also investigate a novel fluid scheme, using a propagator method that conserves
density and energy, that uses rate parameters found from the electric field, and that allows
us to use a relatively big time step by integrating the density in a moving cell with respect
to energy gained within a time step; the significance of this is explained in section 2. This
scheme ultimately reduces numerical diffusion considerably, but most importantly it allows us
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to investigate the effects of numerical errors since the basic propagator scheme can function
across a wide range of mesh sizes and time steps (not being limited by the Courant criterion).

We show that the ‘best’ such scheme, denoted as R(E�), gives predictions which are as
accurate as the R(κ) scheme, but which are valid over a wider range of �t . Indeed, in some
cases the R(κ) scheme may be difficult to use because of conflicting requirements on �t . One
of the main results of our investigation of these fluid models is that a novel limit on �t arises
in the presence of numerical diffusion coupled with exponentially growing density. The new
limit on �t is a lower limit, which may be difficult to reconcile with the limits which apply to
some schemes, since the other limits on �t are upper limits.

On a short time scale, the ‘equilibrium’ fluid scheme, which we denote as the R(E)

scheme, which does not conserve energy and uses parameters found solely from the electric
field, shows fair agreement with the R(κ) scheme and our kinetic model [17]. The R(E)

scheme seems to get the correct values of the rates and transport coefficients over a short
amount of time. Unfortunately, when the electric field saturates, i.e. over a long period of time
as the discharge settles down, the R(E) scheme shows an unphysical growth of density, even
in regions where density is energetically not allowed. Whereas the R(E�) and R(κ) schemes
do not readily obtain the exact same values of α (the fraction of the energy that goes into
ionization as opposed to vibrational and rotational excitations or other inelastic processes),
they give good agreement for the overall density after breakdown, because they both conserve
energy.

In order to get the R(E�) and R(κ) schemes to agree well over a range of mesh spacings
�z and time steps �t , there are various limitations on the time step, which we discuss in
section 4. Some of the limits are well known, such as the Courant limits, but some of them
are not. Some of them only apply to energy-conserving schemes of a certain kind: R(κ).
However, a new lower limit on the time step is derived, which is needed to prevent significant
errors due to the combination of numerical diffusion and rapid growth in density. This new
limit applies to any fluid model which employs a mesh to describe transport in the presence of
an exponential density growth during particle movement. The TDCM is not limited as to its
time step in this regard, since transport between ‘cells’ is only permitted in a limited sense in
the TDCM, and numerical diffusion is essentially absent. The TDCM is only limited by the
dielectric relaxation time, and as such is useful for comparison to the various more standard
fluid models.

The next section describes the numerical implementation of the fluid models employed
here, including a novel propagator scheme (which we denote as R(E�)). Section 3 briefly
outlines the physics contained in the models. Much of this paper is concerned with the speed
at which the ionization front travels. The front travels because of electron drifts and artificial
movement of the front caused by numerical diffusion. The role of photoionization and how
it can be readily included in the TDCM are also discussed. Then, section 4 describes the
limits which can apply to the time step: the well-known Courant limits, in the case of finite
difference schemes; the dielectric relaxation time, which is a physically relevant time scale
which must be resolved; and two new limits, one which is needed to minimize the effects of
numerical diffusion in the presence of density strongly increasing over time, and one which is
needed for accurate calculation of rates in an energy-conserving scheme. Section 5 illustrates
the effects of the choice of �t using numerical results, and section 6 is the conclusion.

2. Numerical implementation of fluid models of breakdown

In the present work, fluid models using propagators [17] have been used throughout. The
‘standard’ energy-conserving version is denoted as R(κ). In the R(κ) scheme, rates are all
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Figure 1. Density n initially in cell i with voltage Vi is moved and densities δni1 and δni2 are put
back in cells i1 and i2 associated with voltages Vi1 and Vi2 respectively.

calculated using the kinetic energy κ . The R(κ) model has also been extended to use rates
and transport coefficients found from the electric field (as in an ‘equilibrium’ model, such as
the R(E) scheme), and at the same time to conserve energy (as in the R(κ) scheme) in a new
model which we denote as the R(E�) scheme. The purpose of developing this new scheme
is to study whether a fluid model could be set up which can capture the same physics as the
TDCM, and if so, to examine its performance.

In this section we describe the basic physics which is common to all the schemes we
consider. We then outline the types of numerical scheme we employ. The basic elements of
the scheme we propose are illustrated in figure 1. Particles with initial mean kinetic energy
κi and potential energy Vi , in initial cell i, move due to drift and diffusion to final cells i1 and
i2 (more than two final cells are likely to arise, but need not be shown here) with potential
energies Vi1 and Vi2 . The numbers put in each cell are found from an overlap rule, based on
the motion of the particles in the cell as they drift and diffuse, as described in [18, 19]. The
particles are put back in i1 in such a way as to conserve energy. In the R(κ) scheme, the kinetic
energy in i1 (say) is simply updated to allow for the energy brought in by the new particles,
and energy is subsequently taken out during inelastic processes, at a rate depending only on κ

in cell i1.
In the R(E�) scheme, particles are put back in cell i1 with mean kinetic energy κ

(
Ei1

)
,

where Ei1 is the electric field in cell i1, and κ
(
Ei1

)
is the equilibrium mean kinetic energy in

an electric field Ei1 . Any excess mean kinetic energy above κ
(
Ei1

)
which electrons pick up

in the move from i to i1 is used in inelastic processes—see below. The number of electrons
δni1 , which are put back in i1, thus add a kinetic energy δni1κ

(
Ei1

)
to the total kinetic energy

in that cell. Conservation of energy is handled similarly to the R(κ) scheme [17]. In each cell
i of the mesh, the total number of particles in the cell, ni , and the total kinetic energy κTOT

i are
stored (as well as the voltage Vi). In this procedure, therefore, the total kinetic energy κTOT

i

increased by δni1κ
(
Ei1

)
, and the number increased by δni1 .

In this discussion of the R(E�) scheme, we have assumed that the final cells have a lower
potential energy for the particles than the initial cell, and if this is the case and excess kinetic
energy is available, we assume excitation and ionization took place during the move. The
number of particles in the initial cell is divided into fractions going to each final cell according
to an overlap rule [18]. Let the number starting from i going to i1 (i.e. the number which
would go from i to i1 in the absence of ionization) be ni,i1 . Then the number which reach i1

from i will be

δni1 = ni,i1 exp(αE/EIz). (1)

EIz is the ionization potential. α ≡ α(E) is the fraction of the energy E which goes into
ionization, and α allows for energy loss to vibration, excitation, etc, since the rest of the
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energy goes into other inelastic processes [19]. E is the energy per particle available for
inelastic processes,

E = κi − κ
(
Ei1

)
+ q

(
Vi − Vi1

)
. (2)

q is the particle charge. The expression for δni1 is the result of integrating the equation

dn

dE
= α

EIz
n (3)

over the particle motion, and is preferable to numerically integrating equation (3), once per
numerical step, since it allows a considerably larger step. (If equation (1) is not employed,
another upper limit on �t arises.)

If the final cells are at a higher potential energy than the initial cells, we do not allow
ionization, and we only allow motion to those cells if κi in the initial cell is high enough to
overcome the potential difference W = q

(
Vi1 − Vi

)
. The particles are then put back in cell i1,

each bringing with them a kinetic energy of κi − W .
We also tested a scheme where κi = constant, so E = q

(
Vi −Vi1

)
. This does not conserve

energy when particles move upstream, but shows somewhat less upstream diffusion than was
observed in the fluid–R(E) scheme (that is, the ‘equilibrium’ fluid model). To be consistent
with the TDCM, in the R(E�) scheme, the mobility, diffusion coefficient, ionization rate and
fraction of the energy which goes to ionization, (µ,D, IIz, α), are to be found from E. In
the R(κ) scheme these quantities are instead found from κ , and κ in each cell is found from
conservation of energy [17].

3. Physical model

Transport parameters and the ionization rate (calculated using α, the fraction of the energy
used in inelastic processes which goes into ionization) that are used in the model are found
from kinetic simulations. Details are given elsewhere [17, 19]. We emphasize that the use
of α does properly include the known inelastic processes. It is well known that nitrogen
metastable molecules are produced very efficiently; an estimate in [19] predicted that the
number of metastable molecules could not reach a significant level within one breakdown cycle.
Although the role of photoionization is somewhat unclear, the physical picture we propose
of breakdown does not require great accuracy as to the level of photoionization. It requires
somewhat more accuracy as to the spatial range of the photons creating the ionization. The role
of photoionization in streamer discharges has been studied numerically and experimentally
[21–24]. For the N2 discharge studied here the ratio of the number of photoions to
ions produced by electron impact, ψ (described in [21]) � 10−8. It is difficult to justify
including such a low level of ionization while neglecting other sources. If we do include the
photoionization, we find that at a typical growth rate of γ ∼ 4 × 109 s−1, a relative density
of 10−8 can grow to unity in time τgr = 1

γ
ln(108) ∼ 6 × 10−9 s. The range of the radiation

for these conditions is la � 10−4 m [23], so the ‘speed’ of propagation by this mechanism is
limited to la/τgr ∼ 2 × 104 m s−1. The velocity of the front due to photoionization appears
to be considerably smaller than the electron drift velocity, vdr ∼ 1–6×105 m s−1, for these
conditions. In the cases we have examined, the speed of spreading of the front due to ionization
is not likely to exceed that of the ‘injection’ [1] we have already included, except in the
upstream direction where the densities produced are very low. Photoionization can be readily
included by injection in the TDCM, but the time scale of the photoionization in our case is
too large compared to the breakdown time. Since the speed of propagation by photoionization
is approximately 2 × 104 m s−1, and the mesh size is 2.25 × 10−4 m, then the injection for
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this mechanism should be applied at time ∼11 ns, this being the time for photoionization to
advance the front across one cell of the mesh; whereas the breakdown time is approximately
5 ns. Downstream, therefore, it will have little effect. Upstream, it can introduce some
ionization where otherwise there would be none. The new electrons then promptly drift
downstream, however, and the density produced is again very small. The main effect may be
to spread the streamer sideways—at an angle which is roughly the photoionization spreading
speed divided by the electron drift velocity. This is again small—and cannot be included in
the 1D models discussed here.

4. Limits on the time step

As our fluid models use a propagator method [17], they are not restricted by the Courant criteria
and can be used over a relatively wide range of �z and �t . The physical and to some extent
numerical aspects of the problem place additional limitations on the discreteness parameters,
however. We have examined the limitations on the time step to find the range where the fluid–
R(E�) and R(κ) are valid, and run the models to see how well they agree for various �z and
�t . In this section we outline the limits which apply, starting with the Courant (or Courant–
Fredrichs–Levy), τCFL and τCFL−D limits for drift and diffusive transport, respectively, on a
finite difference scheme. Next, we mention the dielectric relaxation time τdiel, which is a
crucial physical time scale which must be resolved (i.e. �t � τdiel) for accuracy and stability.
We then derive a new lower limit on �t , for a situation where numerical diffusion occurs in
the presence of (exponential) time growth in density, denoted as τNE. We discuss the limits
which can arise in a simple energy-conserving scheme. Finally, we illustrate the role of these
limits in determining the accuracy of simulations in the next section.

4.1. Courant limits

In a general finite difference (FD) scheme, there are limits on the discretization, usually
expressed as limits on the time step, which must be obeyed for accuracy, and sometimes for
stability. In a system with a characteristic velocity v, it is necessary that the ratio, c, of the
physical velocity, v, to the velocity of ‘numerical propagation’, �z/�t , obeys

c = v�t

�z
� 1. (4)

In the presence of diffusion, with diffusion coefficient D, it is additionally required that

d = D�t

(�z)2
� 1. (5)

Thus, from equation (4), the Courant time limit (τCFL) is

τCFL = �z

v
, (6)

and from equation (5), the Courant diffusion limit (τCFL−D) is

τCFL−D = (�z)2

2D
. (7)

Any time step that is employed in a FD scheme has to obey

�t � τCFL, τCFL−D, (8)

for accuracy in describing time evolution, and some instances in stability.
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Figure 2. Schematic illustrates (1) a density pulse which starts at time t = 0 and drifts to
position a, at the same time as spurious diffusion takes place (dashed lines), both before t = τD.

(2) Exponential growth of the spurious density takes place after t = τD , for a time τ exp. The real
density moves from position a to position b in the same time τ exp, thus the real density moves from
its initial position to position b in a total time τdr = τD + τexp.

4.2. Dielectric relaxation time (τdiel)

The dielectric relaxation time τdiel is the time scale of the decay of excess charge, in a collisional
fluid model, given by

τdiel = ε0

qµne

. (9)

ε0 is the permittivity of free space, µ is the mobility of electrons and ne is the electron density.
Thus if the numerical scheme is to describe the evolution of the electric field, the time step
should obey

�t � τdiel. (10)

4.3. Numerical diffusion and exponential growth limit (τNE)

In this section we consider a situation where a flowing fluid is growing exponentially in density
over time. We are concerned to find whether numerical diffusion can artificially introduce
‘spurious’ density to a region, and that density subsequently grows exponentially until it
reaches a value comparable to the actual density, which arrives later. The ‘spurious’ density is
assumed to be in a region with a higher growth rate than the peak of the actual density, whose
growth is ignored, for now. We thus consider numerical diffusion for a time τD which delivers
spurious density a distance z downstream. The spurious density then undergoes exponential
growth for a time τexp. In the same total time, τdr as taken by the combined diffusion and
growth, the actual density drifts the distance z (as shown in figure 2), where

τdr = z

µE
, (11)

and where

τdr = τD + τexp. (12)
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Then the (normalized) spurious density, ns , which is obtained from the diffusion followed
by the exponential growth, is

ns = exp

( −z2

2DnτD

)
exp(γ τexp), (13)

where γ is the growth rate and Dn = (�z)2

2�t
is the numerical diffusion coefficient. This reaches

a ‘critical’ value (rivalling the ‘real’ density) when ns equals 1, in which case

z2

2Dnγ
= τDτexp = τD(τdr − τD), (14)

and the biggest value that the rhs of equation (14) can attain is τ 2
dr

/
4. Substituting the value

of τdr from equation (11) yields the value of the time step when equality is reached (that is,
when the ‘spurious’ density is as large as the real density);

τNE = 1

4

(�z)2γ

v2
dr

, (15)

where the drift velocity vdr = µE.
Another point of view on this process allows for the fact that the code is energy conserving,

so the particle density only grows when particles move and gain kinetic energy. If the electric
field E is roughly constant, then the density grows as a cell moves, in proportion to

exp

(
αqEz

EIz

)
. (16)

However, the motion in this case is assumed to be caused in part by numerical diffusion, and
the numerical diffusion makes the density vary with space, according to

exp

( −z2

2Dnt

)
. (17)

The overall spurious density is given (approximately) by the product of these.
If this product approaches unity, then the spurious density might approach the ‘real’

density. To simplify matters, suppose we are considering a ‘typical’ distance the particles
would travel in the course of the simulation. In that case, z ∼ vdrt , and the combined
exponents are

c = αq
Ez

EIz
− z2

2Dnt
(18)

∼ z

(
α

qE

EIz
− vdr

2Dn

)
. (19)

If c = 0 , which occurs when the (normalized) ‘spurious’ density reaches unity, then
αeE

EIz
= vdr

qDn

. (20)

Now in equation (16), if z = vdrt we obtain a variation like exp(γ t), where γ = αqvdrE/EIz,
so equation (20) yields v2

dr

/
γ = Dn. Using Dn = (�z)2

2�t
we obtain the limiting time step

τNE = γ

v2
dr

(�z)2, (21)

which except for a numerical factor is the same expression as equation (15). For accuracy,
meaning for the spurious density resulting from numerical diffusion to be small, the time step
must obey

�t � τNE. (22)
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This is a lower limit on the time step—but since it essentially expresses the need for modest
numerical diffusion, this is not surprising. Of course, the lower limit can be reduced by
decreasing �z, the mesh size.

4.4. Energy-conserving scheme time limit (τκ)

We now outline limits on the discreteness parameters which apply to an energy-conserving
scheme. In a purely energy-conserving scheme (such as the fluid–R(κ)), the mean kinetic
energy of electrons is a primary-dependent variable. It would be unphysical if the time step
was so big that electrons could gain a great deal of kinetic energy in a time step. For example,
if the mean energy was 2 eV, and the distance that electrons moved in �t allowed them to pick
up 5 eV in the step, then the extra amount gained would lead to an overestimate of the mean
energy. If shorter steps were used, the electrons might pick up 0.1 eV at each step, which
would not lead to a major overestimate of the mean energy. They would lose much of that
energy to inelastic processes, at each step. In other words, if the mean energy is 2 eV, it might
be acceptable for the energy to fluctuate by 0.1 eV per step. Fluctuations of 5 eV would not
be acceptable. If the time step were too large, the mean energy of the electrons would tend
to be overestimated, and that energy, when used in inelastic processes, would tend to create
too many new electrons because at high ‘temperature’ a larger fraction of the available energy
goes into ionization, as opposed to other inelastic processes. Similarly, if the mesh size is
large, the electrons will also travel ‘far’ as they move from one cell to the next, gaining too
much energy in the step, in the same sense as explained above. The distance that an electron
can travel should be much less than δzκ , the ratio of its mean kinetic energy κ and the electric
field force on the particle, qE,

δzκ = κ

qE
. (23)

Thus the spatial mesh size �z should be much less than δzκ to prevent an excessive gain in
kinetic energy. Similarly, in a time step a particle can travel a distance vdr�t which should be
also much less than δzκ . Thus the time step in this R(κ) scheme is limited by

�t � τk = δzκ

vdr
. (24)

For instance, the field strength in our calculations using the R(κ) model is approximately
1.7 V/�z. The energy limitation discussed here, that only applies to the R(κ) model, means
that a particle should not gain kinetic energy comparable to mean kinetic energy κ 5 eV in a
time step. The spatial mesh size must also be small enough that electrons cannot pick up more
energy than a fraction of 5 eV. Therefore, as reported in [17], it is necessary to use very fine
�z (∼2.5 × 10−7 m) and �t (∼5.0 × 10−14 s) to obtain accuracy in the fluid–R(κ) scheme.

The role of these time-step limits is illustrated in section 5.

5. Numerical results

In this section we perform, first, a series of simulations with the fluid–R(E�) scheme and
study the effect of variation in �z and �t in the light of the various limitations on the
time step. We then compare the results obtained from the TDCM, the fluid–R(κ), and the
R(E�) schemes. The simulations were performed for a 5 mm air gap between two 1.5 cm
dielectric slabs (εr ∼ 3) in N2 at atmospheric pressure with 100 kV direct applied voltage.
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Figure 3. Constraint on �t , for different �z. Some choices of m and n (where �z = m�z′ and

�t = n�t ′) with their corresponding time steps (�t); the ratio m2

n
, τCFL, τCFL−D, τNE and τdiel

are also shown. The actual time step �t is required to lie below τdiel and above τNE. The Courant
limits do not apply to the propagator scheme used here, but are shown for reference. Values of
�t which approach the upper limit may lead to inaccuracy or instability. Near the lower limit,
spurious downstream density is observed.

5.1. Mesh size (�z) and time step (�t) in the fluid–R(E�) model

We have explored and compared fluid runs with mesh sizes/time steps of �z = m�z′ and
�t = n�t ′ by varying m and n where m and n are integers. Thus, the numerical diffusion
coefficient Dn is defined as

Dn = (m�z′)2

2(n�t ′)
. (25)

The choice of m and n that gives the lowest Dn will give the least numerical diffusion.
Some choices of �z and �t and the corresponding limits on the allowed time step are

shown in figure 3. In this figure we show choices of �z and �t such that the fluid–R(E�)

works relatively well. (The R(κ) scheme works accurately only for m = n = 1 for reasons
discussed in section 4.4.) We use �z′ = 2.5 × 10−7 m and �t ′ = 5.0 × 10−14 s as the base
case. �t must lie between τdiel (upper limit) and τNE (lower limit) in a discretized fluid scheme.
The propagator scheme is not restricted by the two Courant limits (τCFL and τCFL−D), however.
If we use �t ∼ τNE, the exponential growth of the spurious density will significantly distort
the results. The ‘physical’ density will have to compete with the artificial density which grows
downstream—see the case n = 10,m = 10, in figure 4(b).
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Figure 4. Time evolution of electron densities calculated from the fluid–R(E�), for various (m, n).
(a) Without ionization, the propagator method predicts the drift velocity correctly. The density

depends on the numerical diffusion, which is small provided Dn = (�z)2

2�t
∝ m2

n
is small enough.

(b) With ionization, the case (10,10) violates �t > τNE, and the front accelerates artificially due
to numerical diffusion plus density growth. (5, 500) violates �t < τdiel.

In the discharge we consider, the fluid–R(E�) is used to study the effects of variations in
�z and �t . Plots of electron density without and with ionization are shown in figures 4(a)
and (b) respectively. The time evolution is taken at 0.15, 0.45 and 0.75 ns.

In the absence of ionization (figure 4(a)), the R(E�) obtains the correct speed for all
choices of (m, n). Nevertheless, the magnitude of the density separates the plots into three
groups. When m = n = 10, the result obtained is the lowest in magnitude. In this case, the
time step used has the highest ratio of m2

n
(= 10)—which means that the result obtained by

using m = n = 10 suffers from distortion by numerical diffusion. The ratio m2

n
determines

the difference between the various groups. In the middle group ((m, n) = (1, 1), (10, 100)) so
m2

n
= 1 and in the highest group ((m, n) = (1, 10), (1, 100), (5, 500)) so m2

n
� 1.

When the ionization process is present, the effect of the sizes of �z and �t can be seen
more dramatically. It is now clear that when m = n = 10, and �t ∼ 2τNE, the electron density
shows the effect of spurious density discussed above, that is, the ionization front accelerates
artificially. In the case (m, n) = (5, 500), the time step is very close to the value of τdiel, so
accuracy and stability are not guaranteed (see figure 4(b)), and we obtain a density which is
too high.

5.2. The comparison of breakdown simulation using the fluid models and the TDCM

To further compare the performance of the numerical models we have developed, the fluid–
R(κ), R(E�) schemes and the TDCM were used to simulate a 5.0 mm discharge in nitrogen
gas between two 1.5 cm dielectric slabs. The electron density from the proposed numerical
models after the total breakdown time of approximately 5 ns is shown in figure 5.

The R(κ) and R(E�) models and the TDCM agree satisfactorily1, provided they employ
equivalent values of α. Since the fluid models call for α to be expressed in terms of κ and
E, respectively, this agreement is not automatic. They share the advantage of being energy

1 By comparing the mean kinetic energy of electrons, κ , obtained from the CS and the fluid–R(κ) scheme, it was
found that the κ value from the R(κ) scheme is approximately 10% less than that from the CS. Thus κ ′ = 1.1κ is
used in obtaining the ionization parameters (α and the ionization rate) in the fluid–R(κ) scheme.
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Figure 5. Final electron density calculated from the fluid–R(κ), R(E�) schemes and the TDCM
(initialized with a Gaussian-shaped density).

conserving, however, so they produce results for the ‘final’ density which agree with each
other as well as α allows. The R(κ) and the R(E�) schemes show a slight difference at the
upstream edge. The equilibrium R(E) scheme (not shown) does not conserve energy, so in a
long run, it produces an unphysical exponential density growth, including growth in the area
where the electrons are energetically prohibited.

When m = 1000 and n = 100 (�t = 5 × 10−12 ≈ 0.1τdiel), �z and �t are equal to
the mesh spacing and time-step size (respectively) used in the TDCM; the fluid–R(E�) went
unstable. This demonstrates one advantage of the TDCM over fluid models—it is free of
numerical diffusion and has the ability to work with a relatively coarse spatial mesh and very
large time step.

In these simulations the Debye length is always at least three elastic mean free paths, and
usually a great deal more. As a result, in some locations, the equilibrium approximation to
the transport coefficients is starting to break down. It might be argued that some other fluid
model would be more applicable, such as the fluid–R(κ) model or that in [20]. In fact, only
a kinetic model is truly suited to describe these regions. However, comparison of the R(E�)

and the R(κ) schemes suggests that in the region where the electric field changes rapidly the
two models agree very closely as to the values of the transport coefficients.

Comparison to the kinetic code indicates that all of the fluid codes perform as well as
each other for short times. The non-energy-conserving code, of course, fails at longer times.

6. Conclusions

We have examined the limitations on the discreteness parameters (�z,�t) employed in
implementing a fluid model of breakdown at ‘high’ gas pressures (∼1 atmosphere). We also
examined a class of models which captures the same physics as the time-dependent capacitor
model of discharge breakdown. Perhaps surprisingly, the TDCM performs somewhat better
than the fluid models, in two regards. The TDCM is not subject to numerical diffusion, as
opposed to those fluid models which use a discrete mesh. The TDCM is also less susceptible to
numerical instabilities associated with the time step approaching the dielectric relaxation time.
(The disadvantage of the TDCM is that the price of removing numerical diffusion was the
introduction of an ‘injection’ mechanism [1] which seeds breakdown, which might introduce
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inaccuracy but which in practice is probably less of a problem than numerical diffusion.) A
new expression for a minimum permissible time step τNE was derived, which is needed to
avoid serious errors due to the combination of numerical diffusion and density growing rapidly
over time.

The fluid model we developed nevertheless works considerably better than a purely
energy-conserving scheme. The latter is required to use very small values of the discreteness
parameters, for accuracy, and as a result it may have to operate very close to the minimum
time step τNE.
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